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if the test is made on the large prototype. On the other hand 2. 
the test would he much simpler, because one would not be 
obliged to think about the questions of how to find the 
right materials or how to increase the lamp intensities or 3. 
the thermal contact coefficients. 
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NOMENCLATURE 

acceleration of an electron or molecule between 
2 collisions ; 
specific heat ; 
specific heat at constant pressure; 
specific heat at constant volume ; 
velocity of momentum propagation; 
velocity of heat propagation; 
energy of a molecule or electron ; 
distribution function; 
equilibrium distribution function; 
thermal conductivity; 
Boltzmann’s constant; 
mass of an electron or molecule ; 
number of free electrons or molecules ; 
per unit volume ; 
pressure ; 
heat flux vector; 
temperature ; 
time ; 
velocity in x direction; 
velocity vector ; 
velocity in z direction; 

x. y. I. coordinate axes. 

* Assistant Professor, Department of Mechanical Engi- 
neering, Massachusetts Institute ofTechnology, Cambridge, 
Massachusetts. 

Greek symbols 
a. thermal diffusivity ; 

4. as defined by equation (12) ; 

Y. CdC” ; 
p. viscosity ; 
P. density ; 
T. shear stress ; 
‘I,. relaxation time. 

1. INTRODUCTION 

AT THE present time the analytical treatment of diffusional 
type of transfer processes is restricted to the domain of the 
validity of the phenomenological relation given in the form 

Ji = L, Xj (1) 

where Ji represents fluxes and X, the thermodynamic forces. 
Strictly speaking. equation (1) should be applied only to 

low rate steady-state transfer processes. and all L,, are 
defined in this manner. However, in practice the validity of 
relation (1) is successfully extended to the unsteady pro- 
cesses without altering the values of L,,. Phyiscally. there 
must be a time scale where the validity of (1) is violated. 
Several investigators [13, 141 having this in mind, tried 
experimentally, by applying relation (1) to transient heat 
conduction to show that the heat flow is not only pro- 
portional to the temperature gradient. but also rate 
dependent. 

The results of these experiments are not conclusive: the 
authors in [14] had indicated the possibility of a significant 
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departure from prediction based on relation (I), whereas the 
authors in [ 131 did not find any discrepancy. (The disagree- 
ment could come from a possibly inappropriate measure- 
ment technique employed in [14].) 

The inadequacy of equation (1) to describe completely 
the true physical situation was the motivation for discussion 
[5-lo] with some suggestion on modification of pheno- 
menological relation (1) for the case of heat conduction. 

Quite recently. the whole problem has been treated more 
generally by Luikov [4]; by applying the phenomeno- 
logical theory of thermodynamics of irreversible processes, 
the author modified (1) for the case when deviation from the 
equilibrium state is not very large into the following ex- 
pression : 

Ji = L;; + &,x, + L;,$ 

The author further suggested that in many cases the rate of 
change of thermodynamic forces is small and hence equation 
(2) can be approximated by 

Ji = L$ + ~~~~~ 
For steady-state processes equation (2) reduces to 

equation (1). It should be noted that relation (2) or (3) 
(applied to heat conduction) will produce a hyperbolic type 
of differential equation for temperature distribution. The 
thermodynamics of irreversible processes cannot yield any 
additional information about L;. The theoretical derivation 
of L; can be performed with the aid of the kinetic theory or 
the methods of statistical mechanics. provided that one, by 
the same method could justify the form of equation (3) for 
each particular transfer process. 

In the following by applying the concept of relaxation 
time a model equation for heat conduction in metals and 
gases will be developed. 

2. DERIVATION OF THE MODEL EQUATION 

We recall that thermal conductivity is defined by the 
relation : 

(i) steady state = - KVT (4) 

where $ the heat flux, is the only flux occurring in an 
isentropic medium. Let fl< z t) represent the distribution 
function (for molecules, for gases and electrons for metals). 
Then Boltzmann’s equation for the distribution function 
has the form : 

Of af 
E = at _,, L-1 

For certain types of interaction [l-3] one can write the last 
term of equation (5) as 

af [1 f - so 
at Eo,, = - 2, (6) 

The model introduced by this relation was first used for 
electron gas and also successfully tried in the area of kinetic 
theory of gases where the model is known as the Krook 
model. Equation (6) defines relaxation time. f. is the 
equilibrium distribution function. 

From equations (5) and (6) it follows: 

f=fo - r,(agrad$f+ tfgradtf- rc$ =fo - $J 

af - *cat (7) 

;;(a,. a,. a,) is the acceleration of an electron (or molecule) 
between collisions. 4. as defined by equation (7). is the 
contribution of the external forces and the convective terms. 

Considering a case when non-uniformity exists in x- 
direction only. one can write for the heat flux 

where E is the energy of a molecule (or electron). From (7) 
and (8) and the fact that the equilibrium distribution 
function is an even function of velocity components u, u and 
w. it follows 

+nU +nO 

uEr$dududw- re uE;dudvdw. (9) 

When in writing (9) it was assumed that the relaxation time 
is not a function of the velocity. From (8) and the assumption 
that E is a function of velocity only. one obtains directly 

+m 

u.EafdudrdH.. 
at 

(10) 

-m 

At this stage, let us restrict our consideration to pro- 
cesses for which 

f-foe, 
f0 

(11) 

and use this to approximate 4 as 

4 = r,(a gradf f. + 7 grad? fo). (12) 

Using equations (10, 12, 4. 9) one readily obtains the rate 
equation for heat conduction [subject to limitation (11)] as 

(13) 

The form of (13) is in agreement with Luikov’s general 
expression (3) as well as with the suggestion proposed in 
[S. 61. 

2.1. Heat propagation in metals 
Equation (13), together with the conservation of energy 
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equation : 

ax aT 
-=-pc- 
ax at (14) 

represent the hyperbolic system of two partial differential 
equations from which one can obtain the velocity of heat 
propagation (3 as 

k cf=_=! Y 
PC7c 7c 

where a stands for heat diffusivity. In the case of constant 
properties (a, 7J, the temperature distribution is implicitly 
determined from (13) and (14) 

aT 2 
x+Tcz=aE 

ax2' (16) 

One can relate 7c to the thermal conductivity K by assuming 
an appropriate equilibrium distribution for free electrons 
(Jo) in equation (12) and integrating the relation {which 
holds for steady state [subject to restriction (1 l)]} 

_ 

uEq5 du do d (17) 

Using Fermi-Dirac distribution for f0 and integration of 
(17) (for condition of zero current flux in x-direction) yields 

Cl1 

K,?$?!!! 
m 

where k is Boltxmann’s constant, n is the number of free 
electrons per unit volume, m is the mass of an electron. 

From (18) and (15) one calculates the velocity of heat 
propagation in the form : 

nZk2Tn xZkT 
c;=_,-. 

3pcm 9m 
(19) 

Where in obtaining the last expression on the right hand 
side of equation (19) we used the fact that for metals (at 
ordinary temperature) c = 3Nk/p where N is the number of 
atoms per unit volume (approximately equal to the number 
of free electrons per unit volume). After necessary substitu- 
tions, one obtains 

C, = 101 x lO’(,/T)ft/s 

where T is in “R. 

(20) 

To illustrate the significance of the new form of the rate 
equation, one can solve telegraph equation (16) by con- 
sidering classical transient problem : isentropic semi-infinite 
body, initially at zero temperature. At time t = 0. T is raised 
to unity at x = 0 and it is maintained at unity at that section. 

For this boundary and initial conditions the solution 
of (16) may be written [12] treating c, and a as constants, 
in the following form 

6E 

.x 

exp (- tci/2a) 
T=l- 2a 

0 

+~c’~ 1 dx.forx < c 
2a”Y-’ y t (21) 

and T = 0 for x > c,t. The alternative form of the solution 
is given in (15) for x z c,t 

T=exp(-~)~0(Y)+2~(~~I~(Y)l; (22) 

I= 

where 

y ~ JCkw02 - x21 
2a CIV 

W=_ 
c,t - x 
-Y&-C” 

It follows from (21) that when c, -P cc 

limT,_,, = l-- 
J(tlaJexp (- G)dx = erfc& 

0 

which is the known solution for the problem when one uses 
the Fourier rate equation. The temperature “jump” occurr- 
ing at x = c,t for a finite value of c, can be evaluated from 
equation (21) as 

It follows from relation (23) that the discontinuity at x = c,t 
will be higher for smaller time (shorter distances). However, 
even for t = lo-i3 s which corresponds to the position of 
the “wave” front at 10m6 in [using c, = 2.26 x 10’ ft/s; 
see equation (20)] : discontinuity was estimated to be only 

lim Tr,_,,,-6in-0 N 10e4”F 

(T = 0 for x;:-r 10e6 in + 0). 
The value for temperature at the same x and t calculated 
from the classical solution was T = 1O-26 “F; i.e. between 
the values for x, - 0 and x, + 0. Hence, for any reasonable 
step increase in temperature at the surface x = 0 at t = 0 
(up to 1000°F) the discontinuity at the wave front for 
t > lo-i3 s would be unmeasurable. Moreover, the dis- 
crepancy between the two solutions, not only at the front 
wave. but everywhere. is practically non-existant. From this 
example (since there is no reason to expect substantial 
changes between the two solutions for other geometries 
and boundary and initial conditions) one may conclude 
that for metals: (a) the use of classical solution is quite 
sufftcient to describe temperature distribution (even at time 
scale of as small as 10-i’ s), and consequently (b) it is un- 
reasonable to attempt to verify by experimental methods, 
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discrepancy between the two solutions. Any recorded 
deviation of experimental results from the prediction based 
on the classical solutions did not result from the (measurable) 
inaccuracy of the solution, but rather came as a result of 
unsophisticated measurement techniques. 

It is of some interest to mention here that the above 
conclusions are obtained based on the model introduced 
with equation (6) as well as the use of Fermi-Dirac distribu- 
tion for the equilibrium distribution. With the same model 
and the equilibrium distribution one can calculate electrical 
conductivity e as a function of relaxation time. From 
expression (19). for thermal conductivity. and value for (r 
calculated from the model [l] one obtains the value for the 
Lorenz number as 

= 2.71 x lo-i3 electrostatic units 

--E is the charge of an electron. 
The observed average value for the Lorenz number in 

metals was found to be L = 2.72 x lo-l3 electrostatic 
units. Based on the good agreement between the predicted 
value for the Lorenz number and the observed one, one may 
conclude that the concept of the relaxation time used here 
could produce reliable results. 

2.2. Model rate equation for gases 
For monatomic gases, assuming the Maxwellian distribu- 

tion for fO. and integrating (17) (under the condition of zero 
net mass flux) one obtains 

5 k2nT 
K=Zm~c 

n is the number of molecules per unit volume. m is the mass 
of a molecule. For gases with intemal’degrees of freedom. 
the thermal conductivity can be written as [ 111 

(24) 

where y z cr/c,. From equations (24) and (13), using the 
following relations ; 

k 
-= R; cp = LR; = RT. 
m Y-l 

p=mn; p 
P 

one obtains for the rate equation 

,~=_~at_!% 
ax PC, at (25) 

It is of some interest to find an estimation for the velocity 
of heat propagation in a perfect gas. In order to do this we 
write the energy differential equation in the following form : 

PC”!&= -v.+i? (26) 

where ? is bulk velocity of the gas. For temperature non- 

uniformity in x-direction only. and stagnant medium 
(v’ = 0). equation (26) reduces to 

a4, aT 

ax= 
- PC”X (27) 

which together with (13) yields the expression for the velocity 
of heat propagation 

k 

or. by making use of equation (24) 

Pf 
c,=y - 0 P 

The above value for the velocity of heat propagation. the 
same as the velocity of sound, was obtained by approxi- 
mating energy equation with (27) (which is exact only for 
stagnant medium-implying also constant density). 

On the other hand, by writing the energy equation in the 
form 

and assuming constant pressure process and neglecting 
convective term, one would obtain, together with relations 
(13) and (24). the expression for the velocity of heat propaga- 
tion 

Pf c,= - 0 P 
(2% 

Without claim that either of the expressions given above 
for the velocity of heat propagation is the exact one. one 
should notice that both results gave the value for c, of the 
expected order of magnitude. Since for both, the heat propa- 
gation and the sound propagation in a gas. we have the 
same mechanism of transport one should expect that those 
two velocities must be of the same order of magnitude (also 
order of magnitude of average velocity of a molecule). We 
want to stress here that the ambiguity connected with the 
true velocity of heat propagation (related to the energy 
equation) does not affect the rate equation (25) which is 
derived directly from the concept of the relaxation time. 
The significance (or non-significance) of the modified rate 
equation is not quite apparent. In spite of the claim asserted 
in reference [4] that the effect of a finite velocity of heat 
propagation on heat transfer becomes pronounced under 
conditions of rarefied supersonic flow. it still remains to be 
shown conclusively that it is really advantageous to use the 
rate equation which implies a finite velocity of heat propaga- 
gation instead of the Fourier equation. 

It should perhaps be noted here that a model rate equa- 
tion of the type given by equation (13) could be obtained 
for the case of heat conduction through dielectric solids 
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where r, in equations (13. 15, 16) would then represent 
relaxation time for latice vibration. 

In closing, we would like to mention that the same pro- 
cedure may be applied to resolve some contradiction in 
momentum propagation. For example, if one considers a 
long plate in a fluid, any disturbance of the fluid by a motion 
of the plate in normal direction will propagate through the 
fluid by the velocity of sound. On the other hand. if the 
motion of the plate happened to be in the tangential direc- 
tion. one would get from the set of equations presently in 
use to describe the above phenomenon. that the disturbance 
propagates with an infinite velocity. 

For the momentum propagation in a gas. one can show 
that the similar procedure as used for the heat conduction. 
would yield the following expression for the shear stress : 

au a5 

r=p5-7C~ 
(30) 

where p is the coefficient of viscosity and u is the bulk 
velocity in x-direction. Relating p to relaxation time. one 
obtains [3] 

p = nkTr,. (31) 

With equation (31) the modified Newton relation (30) can 
be written as 

au 1 az 
==P ---- ay P at 

From (32) and the relation for the conservation of momentum 
(for bulk velocity in x-direction and its non-uniformity in 
y-direction only) 

aT au 
ay=T% 

it is possible to obtain the expression for the velocity of 
disturbance propagation in y-direction (under stated condi- 
tions) as 

cm= ! 
f 

0 P 
(33) 

Again, the result gave the value for the velocity of propaga- 
tion (c,) of the expected order of magnitude. 

Finally, we want to stress the fact that an identical theo- 
retical approach could modify the rate equation for any 
diffusion transfer process and hence. resolve inadequacy 
of relation (1) to describe completely the true physical 
situation (which is in most cases only of academic import- 
ance). 

CONCLUSION 

The attempt was made here to resolve some incon- 
sistency of the classical rate equations in connection with 
the description of certain physical situations. The main 
purpose was not to emphasize the importance of the modified 
rate equations and the need for their application in practice, 

but rather to underline the fact (at least for some cases such 
as transient heat conduction through metals) that the 
significance of the new relations might be merely academic. 
The whole work was initiated in order to find justification 
for some recent experimental research aimed at modification 
of the Fourier conduction equation. 

The conclusion which follows from our finding being that 
all attempts (with the present measurement technique) to 
observe discrepancy between experimental results and 
theoretical predictions based on the classical rate equation 
is unrealistic, and furthermore. the classical solutions, 
for all practical purposes. are more than adequate to 
describe temperature distributions in metals. 

The validity of the results presented here, of course. 
depend on the model and assumptions used in the work. 
However, the model was already successfully tried (for 
metals: good prediction of the Lorentz number; for gases: 
known accomplishments of the Krook model) and hence, 
in our opinion, there is a basis for confidence in the derived 
relations. In addition, the results obtained by the model are 
quite expected (for metals: introduction of finite velocity of 
heat propagation will not produce any significant changes 
in the predicted temperature distributions; and for gases: 
the velocity of heat propagation is of the same order of 
magnitude as the velocity of sound). 

Finally, in connection with the obtained results concerning 
perfect gases, we want to state that at this stage it is not 
quite clear what their significance could be and that in this 
region further work is required before any judgement can 
be passed. 
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